High Temperature Asymptotics in Terms of Heat Kernel Coefficients: Boundary Conditions with Spherical and Cylindrical Symmetries

نویسندگان

  • Michael Bordag
  • Vladimir Nesterenko
چکیده

The high temperature asymptotics of the Helmholtz free energy of electromagnetic field subjected to boundary conditions with spherical and cylindrical symmetries are constructed by making use of a general expansion in terms of heat kernel coefficients and the related determinant. For this, some new heat kernel coefficients and determinants had to be calculated for the boundary conditions under consideration. The obtained results reproduce all the asymptotics derived by other methods in the problems at hand and involve a few new terms in the high temperature expansions. An obvious merit of this approach is its universality and applicability to any boundary value problem correctly formulated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High temperature asymptotics of thermodynamic functions of electromagnetic field subjected to boundary conditions on a sphere and cylinder

The high temperature asymptotics of thermodynamic functions of electromagnetic field subjected to boundary conditions with spherical and cylindrical symmetries are constructed by making use of a general expansion in terms of heat kernel coefficients and the related determinant. For this, some new heat kernel coefficients and determinants had to be calculated for the boundary conditions under co...

متن کامل

Vibration analysis of functionally graded cylindrical shells with different boundary conditions subjected to thermal loads

In the present work, study of the vibration of a functionally graded (FG) cylindrical shell made up of stainless steel, zirconia, and nickel is presented. Free vibration analysis is presented for FG cylindrical shells with simply supported-simply supported and clamped–clamped boundary condition based on temperature independent material properties. The equations of motion are derived by Hamilton...

متن کامل

Buckling and Thermomechanical Vibration Analysis of a Cylindrical Sandwich Panel with an Elastic Core Using Generalized Differential Quadrature Method

In this paper, the vibrational and buckling analysis of a cylindrical sandwich panel with an elastic core under thermo-mechanical loadings is investigated. The modeled cylindrical sandwich panel as well as its equations of motions and boundary conditions is derived by Hamilton’s principle and the first-order shear deformation theory (FSDT). For the first time in the present study, various bound...

متن کامل

Non-Fourier Heat Transfer Analysis of Functionally Graded Spherical Shells under Convection-Radiation Conditions

Non-Fourier heat transfer analysis of functionally graded (FG) spherical shells subjected to the radiative-convective boundary conditions at their inner and outer surfaces are presented. It is assumed that the material properties have continuous variations along the thickness direction. The incremental differential quadrature method (IDQM) as an accurate and computationally efficient numerical ...

متن کامل

New Results in Heat-kernel Asymptotics on Manifolds with Boundary

A review is presented of some recent progress in spectral geometry on manifolds with boundary: local boundary-value problems where the boundary operator includes the effect of tangential derivatives; application of conformal variations and other functorial methods to the evaluation of heat-kernel coefficients; conditions for strong ellipticity of the boundary-value problem; fourth-order operato...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001